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Experiments were performed in order to elucidate the effects of hydrodynamic 
interactions between two drops on their gravity-induced relative motion. The 
relative trajectories of two drops, their relative velocities, and the travel time for 
them to flow around each other were measured for different initial horizontal 
separations. Two size ratios and two viscosity ratios were investigated. Hydro- 
dynamic interactions significantly reduce the relative velocity of two nearby drops 
and cause them to flow around each other with curved trajectories, resulting in a 
longer duration of the close encounter, compared with that for two non-interacting 
drops. These effects increase with decreasing drop separation, decreasing size ratio, 
and increasing viscosity ratio. Experimental results are in good agreement with 
theoretical predictions, except when the drops become sufficiently close that 
interface deformation occurs. 

1. Introduction 
Hydrodynamic interactions of drops with other drops dispersed in an immiscible 

fluid are of fundamental importance in a variety of natural and industrial processes, 
such as raindrop growth, liquid-liquid extraction, and the processing of liquid-phase 
miscibility gap and other composite materials. Under the action of gravity, drops of 
different sizes may approach each other due to their different settling velocities. 
When two drops are within several radii of each other, the presence of the 
neighbouring drop disturbs the velocity fields around each drop. These disturbances 
modify the velocity of each drop, with the effect increasing as the separation between 
the drops decreases. These hydrodynamic interactions resist the relative motion of 
the two drops and cause them to flow around each other. In  this paper, we present 
the results of experimental studies on the hydrodynamic interactions between two 
drops undergoing gravity-induced relative motion. 

Hydrodynamic interactions between two rigid or fluid spheres moving through a 
quiescent fluid at low Reynolds number have been studied extensively by theory 
(Jeffrey & Onishi 1984; Haber, Hetsroni & Solan, 1973; Zinchenko 1980). Previous 
efforts have focused on binary interactions of two spheres and yielded infinite series 
for the two-sphere resistance or mobility functions, which describe the hydrodynamic 
interactions between two spheres. Davis (1984) and Melik & Fogler (1984) used these 
functions in trajectory analyses to follow the gravity-induced relative motion of two 
rigid spheres. These analyses demonstrate the effects of hydrodynamic interactions 
on the trajectories of interacting particles, and they are especially useful in 

t To whom correspondence should be addressed. 
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predicting collision rates. The trajectory analysis has recently been extended to  
predict the interactions and collisions between two spherical drops (Zhang & Davis 
1991). Tn their study, the role of the internal flow within the drops, which becomes 
more important with decreasing viscosity of the drop phase compared with that of 
the matrix fluid, was addressed. 

In contrast to intensive theoretical efforts on hydrodynamic interactions of two 
spheres, experimental studies of the subject are relatively sparse. Experimental 
investigations of hydrodynamic interactions of two rigid spheres in low-Reynolds- 
number simple shear flow were performed by Arp & Mason (1977) for equal-sized 
spheres and by Adler (1981) for unequal-sized spheres. Considerable data for the 
relative trajectories of two spheres, the relative velocity of two non-touching spheres, 
and the rolling velocity of two touching spheres were obtained, and they show good 
agreement with theoretical prediction (except when the particles are so close that 
small surface roughness affects their interaction). However, fluid drops behave 
differently in regard to hydrodynamic interactions, primarily because of internal 
flow and interface deformation. In  particular, the internal flow, which may be 
described in terms of an interface mobility, allows two drops to approach each other 
with less hydrodynamic resistance than for rigid spheres (Davis, Schonberg & 
Rallison 1989), whereas interface deformation significantly reduces the relative 
velocity between the two drops (Yiantsios & Davis 1991). Unfortunately, 
experimental data for the interaction of two fluid drops under low-Reynolds-number 
flow conditions are limited. A series of experiments on the interaction of a settling 
drop and a planar surface under the action of gravity were carried out by Bart 
(1968). The experimental results for the terminal settling velocity of the drop as a 
function of its distance from the surface suggest a qualified support of theory. 
Recently, Barton & Subramanian (1990) performed experiments to investigate the 
effects of hydrodynamic interactions of a fluid drop and a solid planar surface on 
drop migration driven by gravity, by predominately thermocapillary effects, and by 
comparable gravity and thermocapillary effects which are aligned in opposite 
directions. In all three cases, the experimentally measured drop velocities are in 
excellent agreement with theoretical predictions. Similar experiments on gas bubbles 
have been conducted by Merritt & Subramanian (1989). 

Although extensive studies have been made on the impact of two drops a t  high 
velocities (Brazier-Smith, Jennings & Latham 1972; Ashgriz & Po0 1990; Jiang, 
Umemura & Law 1992), experimental results for hydrodynamic interactions between 
two drops in low-Reynolds-number flow are rare. An exception is the investigation 
by Bartok & Mason (1959) on the approach, rotation, and separation or coalescence 
of two drops in simple shear. The current study involves experiments to  test the 
theory for low-Reynolds-number interactions during gravity-induced relative motion 
of two small drops. In  this paper, details of the experimental materials and methods 
are described in $2. In  $3, we provide the necessary theoretical results extracted from 
Zhang & Davis (1991). Section 4 presents the experimental results and their 
comparison with theory. Concluding comments are provided in $ 5 .  

2. Experimental materials and methods 
A schematic of the experimental apparatus is shown in figure I. The glass chamber 

has dimensions 8 x 8 em in the horizontal cross-section, and is 25 cm in depth. This 
size is sufficiently large that wall effects are negligible, and i t  allows for the two drops 
to start with a large vertical separation. The chamber is immersed in a large water 
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FIGURE 1. Sketch of the experimental setup for gravity-induced motion of two drops. 

reservoir to keep the temperature of the fluids constant. Tnside the chamber, a mirror 
standing vertically is positioned a t  a 45" angle from the view of a Sanyo VDC 3860 
video camera. This mirror is visible to  the camera, allowing the drops to be viewed 
from two perpendicular angles simultaneously. Observing the two views makes it 
possible to accurately measure both the horizontal and the vertical separation 
between the drops. The camera is held on a focusing rail so that it can be manually 
moved to follow drops, and it is connected to a Panasonic AG-1830 video cassette 
recorder and a Panasonic CT-2010Y colour video monitor to observe and record the 
drop motion. 

Drops were introduced in the top of the chamber by inserting a microdispenser 
filled with the drop fluid into the matrix and releasing a certain amount of the fluid 
to form a drop. By adjusting the volume of the released fluid, the drop size can be 
controlled. Under the accuracy limits for the delivery volume of the microdispenser, 
the smallest drop generated for the present experiments was 0.35 mm in radius. The 
microdispenser is placed into position by inserting it through a hole bored in a 
specially designed holder. Mounted on a micrometer with a precision of 0.01 mm, this 
holder can have its position changed horizontally in the direction perpendicular to 
the view of the camera; therefore, the initial horizontal positions of drops can be 
adjusted. 

Two fully immiscible fluid systems having different viscosity ratios were chosen. 
One system consists of castor oil (drops) in the GE silicone fluid SF-1147 (matrix) 
with a viscosity ratio of 13.3. The system chosen for a low viscosity ratio of 0.76 is 
the Union Carbide fluid UCON 50HB-280X (drops) in heavy paraffin oil (matrix). 
The relevant properties of these fluids are listed in table 1, where p' and p are 
viscosities of the drop phase and the matrix fluid, respectively, p' and p are their 
densities, y is the interfacial tension, and Ui0) represents the settling velocity of an 
isolated drop with radius a,. 

Because of small density differences of the drop phases and the matrix fluids, and 
the high viscosities of the chosen matrix fluids, the gravity-induced settling velocity 
of an isolated drop is sufficiently small that the Reynolds numbers, Re = pa, Uio)/,u, 
for the two systems are much smaller than unity (table 1 ) .  Therefore, inertial effects 
upon the drops are negligible when compared to viscous effects. In  addition, the 



230 X .  Zhang, R. H .  Davis and M .  F .  Ruth 

- , Y $  .- 
I 1  

I I  
I 1  

FIGURE 2. Schematic of trajectoriefi of two different-sized drops. 

P'lP P ' l P  Y 7Jf"' 
(g/cm 4 (glcm3) (dyn/cm) (mm/s) Re Ca 

Castor oil-GE fluid 6.8710.52 0.959/0.888 2.29 2.22 0.030 0.050 
UCON fluid-paraffin oil 1.3311.76 1.034/0.880 4.93 1.55 0.0063 0.055 

TABLE 1. Properties of fluids used in experiments a t  22.5', where the velocity, Reynolds 
number, and Capillary number shown are based on a larger drop radius of 0.8 mm 

capillary number, Ca = pU$O)/y, provides a measure of the relative importance of 
viscous effects and capillary effects. As described by Yiantsios & Davis (1991), 
deformation is expected to become important when the separation between the 
interfaces of the two drops, ho, becomes comparable to a2 Ca, where a2 is the radius 
of the smaller drop. From table 1, it is then apparent that deformation will be 
significant when the separation distance is approximately 5% of the smaller drop 
radius. 

When performing each experiment, the smaller drop was introduced first and 
allowed to settle through part of the chamber. After the first drop had settled a 
certain distance, a second, larger drop was inserted and allowed to settle towards the 
first one. Being larger, the second drop settled faster than the first one, leading to the 
two drops approaching, passing around, and separating from each other, as shown 
schematically in figure 2. The entire process of introduction, approach, interaction, 
and separation of the two drops was magnified and videotaped. The taped video was 
then reviewed and analysed. As described in $4, the velocities of individual drops 
when isolated were measured and compared to theory first in order to check for 
convective and interfacial effects. 
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3. Theory 
A theoretical analysis for the hydrodynamic interaction of two fluid drops 

undergoing gravitational sedimentation has been presented previously (Zhang & 
Davis 1991). In the following, the salient features of the theory are described and 
arranged in forms that may be compared with the experiments, with most of the 
mathematical details omitted. 

The analysis is restricted to binary interactions of two drops with radii a, and az ,  
which are arbitrarily oriented, as shown in figure 3. The two drops are composed of 
the same material and are assumed to remain spherical. The motion of the drops 
occurs at  a Reynolds number much smaller than unity, and so inertial effects are 
negligible when compared with viscous effects. Under these assumptions, the 
velocity V,, of drop 1 relative to drop 2 is linearly related to the gravitational force 
and depends only on the instantaneous relative position of the two drops. An 
expression for this relative velocity has been presented by Batchelor (1982) : 

where r is the vector from the centre of drop 1 to the centre of drop 2 and I is the 
unit second-order tensor. The relative velocity of two isolated non-interacting drops 
due to gravity is given by the Hadamard-Rybczynski formula: 

where ,i2 = ,d/p is the viscosity ratio, h = a,/a, is the size ratio, and g is the local 
gravitational acceleration vector. The relative mobility functions L and M are the 
hydrodynamic correction factors for the gravity-induced relative motion along and 
normal to the line of centres, respectively, in order to describe the effects of 
hydrodynamic interactions. Each of these functions depends on the size ratio, the 
viscosity ratio, and the dimensionless separation between drops : s = 2r/(a, + a2), 
where r = Irl is the centre-to-centre spacing. They are equal to unity for s+ co, and 
decrease with s decreasing. 

For two arbitrarily separated drops, solutions for the hydrodynamic interactions 
- based on the method of bispherical coordinates - have been developed by Haber et 
al. (1973) for the motion along their line of centres and by Zinchenko (1980) for the 
motion perpendicular to the line of centres. Moreover, asymptotic expansions for 
widely separated and near-contact drops have been derived by Hetsroni & Haber 
(1978) and Davis et al. (1989), using the method of reflections and lubrication theory, 
respectively. These solutions show that hydrodynamic interactions significantly 
reduce the relative motion of two drops, particularly for the motion along the line of 
centres. Comprehensive information on the relative mobility functions for various 
size ratios and viscosity ratios is presented by Zhang & Davis (1991). 

Decomposing the relative velocity given by (1) into its components along and 
perpendicular to the line of centres (i.e. in the radial and tangential directions, as 
shown in figure 3) yields 

(3) 

(4) 

V,,,, = dr/dt = - Vi;) L cos 0, 

V,,,, = r(dO/dt) = V4;)Msin 19, 

where Vi;) = I y",l is the magnitude of relative velocity of two non-interaeting drops, 
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FIGURE 3. Sketch of two spherical drops moving with arbitrary orientation under the 

action of gravity. 

and 8 is the angle between the line of centres and the gravity vector. Dividing the 
radial by the tangential component and converting to s = 2r / (a , fa , ) ,  we obtain the 
dimensionless relative trajectory equation : 

A($) cos 0 ds 
d8--S M (  s) sin 0 ’ 

- 

By integrating this equation subject to an initial configuration, we can predict the 
relative trajectory of two interacting drops. The interaction time for the two drops 
to flow around each other, and their instantaneous relative velocity, may then be 
found from (3) and (4). 

4. Results and discussion 
The experimental trials started with testing a single drop settling individually in 

the matrix fluid and comparing its settling velocity with theory. Since the volume 
released by the microdispenser was not exact, the radii of the drops created in the 
experiments deviated slightly from the controlled values. The drop sizes measured 
from the videotape and averaged for all 20 experiments are listed in table 2 for the 
two systems, along with plus and minus one standard deviation of the drop radii. 
Besides the uncertainty of the released volume of the drop fluid, the deviation of the 
drop sizes may also result from measurement errors. At  camera and VCR zoom 
magnifications, totalling 46.8 x , the drop radii were measured to a precision of 
kO.02 mm. The measured settling velocities of different isolated drops and those 
calculated by the Hadamard-Rybczynski formula, (2), using the measured drop 
radii are also presented in table 2. The results show reasonable agreement between 
experiments and theory. However, the standard deviations of the measured 
velocities are larger than theoretical ones, particularly for the smaller drops. The 
standard deviations listed for the experiments are those determined from the actual 
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FIGURE 4. Relative trajectories of two interacting drops with h = 0.5 and different initial 
horizontal separations: (a)  for the castor oil-GE fluid system with ,b = 13.3; ( b )  for the UCON 
fluid-paraffin oil system with ,b = 0.76. The solid lines are theoretical predictions and the relative 
motion is from right to left. 

Ui0) (mm/s) Uio) (mm/s) 

a, (mm) a2 (mm) experiment theory experiment theory 

Castor oil- 0.79+0.02 0.39f0.01 2.07k0.14 1.90f0.07 0.48f0.06 0.46k0.02 
GE fluid 

UCON fluid- 0.84f0.02 0.42$-0.01 1.57k0.09 1.65+0.08 0.39f0.05 0.41 k0.02 

TABLE 2. Average drop radii and isolated settling velocities 

paraffin oil 

measurements of the falling speeds, whereas those listed for the theory are calculated 
from the measured variation in drop sizes. A possible factor which would contribute 
to this discrepancy between experiment and theory is convection inside the matrix 
fluid. A small amount of uncertain, background motion within the matrix fluid 
aggravates the deviation of the measured velocities, and its effects become significant 
for the smaller drops whose settling velocities are not much greater in magnitude 
than the background convection. As a consequence of the convection, it was found 
in experiments that the drops wandered slightly in the horizontal direction as well. 

Experiments were conducted with two different-sized drops being released with 
different initial horizontal separations. As predicted, the smaller the initial horizontal 
distance is, the smaller the separation between the drops will become as they flow 
around each other ; therefore, the drops will experience a stronger hydrodynamic 
resistance, resulting in a slower relative velocity and more deviation from the 
rectilinear trajectories. The curved relative trajectories of two drops which start with 
different initial horizontal separations are shown in figure 4 for the two systems with 
a size ratio of h = a2/al = 0.5. In this figure, the solid lines represent the theoretical 
predictions determined by numerically integrating (5), and the points are 
experimental results. Relatively good agreement between the results is demon- 
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FIGURE 5. Differential travel time for two drops with A = 0.5 due to hydrodynamic interactions 
versus the initial horizontal separation ; the solid lines are theoretical predictions. 

strated, except for when the two drops are very close to one another, where 
interface deformation allows the two drops to move closer than predicted for 
spherical drops. Moreover, at  a camera magnification, 16.3 x , the measurement 
uncertainty in the distance between the two drop centres was f0.15 mm, which is 
more than 10% of the centre-to-centre distance when the two drops are very close 
to one another. 

The hydrodynamic interactions resist the relative motion of two drops, and force 
the drops to flow around each other with curved trajectories instead of rectilinear 
trajectories. Therefore, a longer time is required for the larger drop to pass around 
the smaller one than in the absence of interactions. The travel time was measured for 
the two drops to pass around each other from a prescribed initial vertical separation, 
Lo, to an equal final vertical separation, as shown in figure 2. In analysing our 
experiments, the dimensionless value of this separation was chosen to be 
Ho = 2L,/(a1 +a2) = 14.0. The distance and time measurements were made possible 
because vertical reference lines were videotaped behind the drops. The results for the 
dimensionless difference A7 = 2( t - t (O) )  Vi;)/(a, + a2) between the measured time, t ,  
for the two interacting drops to move from a dimensionless vertical separation of 
+Ho to one of -Ho ,  and that predicted for two non-interacting drops, t(O), are 
presented in figure 5 .  By subtracting the time for two non-interacting drops to move 
the same distance, the effects of hydrodynamic interactions are more definitely 
described by the additional time required for the drops to overcome the 
hydrodynamic resistance. The experimental results show good agreement with the 
theoretical predictions, although there is moderate scatter in the data due to 
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FIGURE 6. Differential travel times for two drops in the approach half' of their trajectories, Arl, 
versus those in the receding half, Ar2, for A = 0.5; the 45" solid line is the theoretical prediction. 

convection and measurement uncertainties. For large values of the dimensionless 
initial horizontal separation, yo = 2y$/(al +a,), Ar + 0 because the hydrodynamic 
interactions are negligible. With decreasing initial horizontal separation, the 
differential or delay time increases due to increasing hydrodynamic interactions. 

When the initial horizontal separation is smaller than a critical value, yo < y,,, two 
spherical drops are predicted to collide and coalesce with each other (Zhang & Davis 
1991). For the system with b = 0.76 and h = 0.5, the critical value is yc = 0.67, 
whereas it is yc = 0.20 for the system with I; = 13.3 and h = 0.5. However, collisions 
of the two drops were rarely observed, even when the initial horizontal separation 
was smaller than the critical value, presumable due to deformation of the drops 
caused by lubrication forces when in near contact. The deformation significantly 
reduces the drop relative velocity, and its effects increase with decreasing distance 
between the two drops. The three data points in figure 5 with yo < yc for C; = 0.76 
confirm this by showing a large interaction time but no coalescence. Finally, we note 
that drops with a large viscosity ratio experience stronger hydrodynamic resistance 
to their relative motion than do drops with a small viscosity ratio, and so it takes a 
longer time for the larger drop to pass around the smaller one. This trend is confirmed 
by the experimental data of figure 5. 

In the absence of colloidal effects, the trajectories of two spherical drops are 
predicted to be symmetric with respect to the plane in which B = in. In order to 
check this symmetry, the measured differential times for two drops during the 
approach and receding halves of their trajectories were compared with each other 
and are shown in figure 6. The theoretical prediction of a 45" straight line is presented 
as a reference. It is clear that most of the experimental results are in reasonable 
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FIGURE 7. Differential travel time due to hydrodynamic interactions for the castor oil-GE fluid 
system with ,ii = 13.3 for different size ratios versus the initial horizontal separation ; the solid lines 
are theoretical predictions. 

agreement with the theory, except for some scatter which probably resulted from 
small measurement uncertainties and convection inside the matrix fluid. However, 
for the drops with ,LL = 0.76 and yo < yc (corresponding to  the three solid circles 
furthest to the right in figure 6),  the differential time spent in the approach half of 
the drop trajectories is about 20% longer than that in the receding half. Although 
the difference is not significant a t  the 95 % confidence level, it  is consistent with the 
expectation that deformation would break the symmetry of the drop trajectories. 

Figure 7 presents results of the differential time with different size ratios, h = 0.5 
and 0.8, for the castor oil-GE fluid system with I; = 13.3. The theory predicts that, 
with decreasing size ratio, the smaller drop tends to follow along the fluid streamlines 
surrounding the larger drop, and is easily displaced by the larger drop, resulting in 
a more curved relative trajectory of the two drops and a longer time for the two drops 
to flow around each other. However, the difference between the predicted results for 
the two size ratios employed is small, and the scatter in the experimental data is too 
great for the difference in the time to be clearly detected. 

The experimental results were also analysed to determine the relative mobility 
functions, L and M .  The distance between two drops, r ,  and the angle between the 
line of centres of the drops and the gravity vector, 0, were measured at  set time 
separations. After non-dimensionalizing the distances and the time, the variations of 
the distance and the angle with time were determined by best fitting the measured 
values with polynomials using the method of least squares in the region between 
s = 10.0 and 2.4. By differentiating these best fits of the data with respect to time, 
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FIGURE 8. The relative mobility function for two drops with h = 0.5 moving along the line of 
centres versus the dimensionless separation distance ; the solid lines are theoretical predictions. 

the relative mobility functions along and normal to the line of centres were 
determined fi-om the dimensionless forms of (3) and (4), respectively : 

where r = 2Vl;) t / (a l  + a,) is the dimensionless time. 
The relative mobility functions were determined from three experiments for each 

system, and the results are plotted in figures 8 and 9, for motion along and normal 
to the line of centres, respectively. Data for which cos 8 < 0.1 or sin 0 < 0.1 were not 
included in the determination of L or M ,  respectively, because small measurement 
errors would then cause large errors in the computed mobility functions. For 
comparison, the corresponding theoretical results from the exact solutions by the 
method of bispherical coordinates (Haber et al. 1973; Zinchenko 1980) are presented 
in figures 8 and 9 as solid lines. Given the uncertainty in the measurements and the 
error propagation due to differentiation of experimental data, these figures show 
good agreement between experiment and theory. For the larger viscosity ratio, the 
relative velocity between the two drops is lower due to larger hydrodynamic 
interactions, and this is indicated by the decreasing relative mobility functions. 
Moreover, the relative mobility functions decrease with decreasing separation 
between the two drops, due to increasing hydrodynamic interactions. Hydrodynamic 
interactions offer greater resistance to the motion along the line of centres and cause 
its relative mobility function to  tend toward zero as the two drops come into physical 
contact (s + 2) .  
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FIGURE 9. The relative mobility function for two drops with A = 0.5 moving normal to the line of 
centres versus the dimensionless separation distance ; the solid lines are theoretical predictions. 
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5. Concluding remarks 
Effects of hydrodynamic interactions on gravity-induced relative motion of two 

drops were determined experimentally. These effects were analysed in terms of the 
relative trajectories, the relative mobility functions, and travel time for the drops to 
move past each other. Most of the experimental results were found to be in good 
agreement with theoretical predictions, except when the drops became so close that 
deformation was expected to occur due to lubrication forces in the gap between 
them. Employing smaller drops would reduce the effects of deformation, although 
this would require more sophisticated equipment for producing the drops, reducing 
convection, and providing sufficient magnification. 

Experimental results demonstrate that  hydrodynamic interactions significantly 
reduce the relative velocity of two nearby drops and cause the two drops to flow 
around each other with curved trajectories, resulting in a longer time for the two 
drops to  pass around each other. Moreover, the theoretical predictions that the 
effects of hydrodynamic interactions increase as the drop separation decreases, the 
size ratio decreases, and the viscosity ratio increases are also confirmed. 

This paper is based upon work supported by NSF Grant CTS-8914236 and NASA 
Grants NAG3-993 and NAG3-1277. 
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